## The Role of Nanotechnology in Disinfection (Total)

#### A LONG LASTING ANTIMICROBIAL TECHNOLOGY FOR HEALTHY ENVIRONMENTS

Diwa Ratnam CEO Katan Technologies



## Agenda

- What is the problem?
- What is an ideal disinfectant?
- What is nanotechnology?
- Why nanotechnology in disinfection?
- What surfaces can it be used on?
- Evidence



### **The Problem: Microbial Persistence**

• Bacteria persist: few hours to 4+ years!

• Fungi persist: 1 day to 150+ days

• Viruses persist: few hours to 20+ weeks

Most viruses from the respiratory tract, such as *corona*, *coxsackie*, *influenza*, *SARS* or *rhino* virus, can persist on surfaces for **a few days**.

KATANtech

## Persistence - Bacteria

Table 1: Persistence of clinically relevant bacteria on dry inanimate surfaces.

| Type of bacterium                       | Duration of persistence (range)            |     |
|-----------------------------------------|--------------------------------------------|-----|
| Acinetobacter spp.                      | 3 days to 5 months                         |     |
| Bordetella pertussis                    | 3 – 5 days                                 |     |
| Campylobacter jejuni                    | up to 6 days                               |     |
| Clostridium difficile (spores)          | 5 months                                   |     |
| Chlamydia pneumoniae, C. trachomatis    | ≤ 30 hours                                 |     |
| Chlamydia psittaci                      | 15 days                                    |     |
| Corynebacterium diphtheriae             | 7 days – 6 months                          |     |
| Corynebacterium pseudotuberculosis      | I-8 days                                   |     |
| Escherichia coli                        | 1.5 hours - 16 months                      |     |
| Enterococcus spp. including VRE and VSE | 5 days – 4 months                          |     |
| Haemophilus influenzae                  | 12 days                                    |     |
| Helicobacter pylori                     | ≤ 90 minutes                               |     |
| Klebsiella spp.                         | 2 hours to > 30 months                     |     |
| Listeria spp.                           | I day – months                             |     |
| Mycobacterium bovis                     | > 2 months                                 |     |
| Mycobacterium tuberculosis              | I day – 4 months                           |     |
| Neisseria gonorrhoeae                   | I – 3 days                                 |     |
| Proteus vulgaris                        | I – 2 days                                 |     |
| Pseudomonas aeruginosa                  | 6 hours - 16 months; on dry floor: 5 weeks | - 4 |
| Salmonella typhi                        | 6 hours – 4 weeks                          | - 1 |
| Salmonella typhimurium                  | 10 days – 4.2 years                        |     |
| Salmonella spp.                         | l day                                      |     |
| Serratia marcescens                     | 3 days – 2 months; on dry floor: 5 weeks   |     |
| Shigella spp.                           | 2 days – 5 months                          |     |
| Staphylococcus aureus, including MRSA   | 7 days – 7 months                          |     |
| Streptococcus pneumoniae                | I – 20 days                                |     |
| Streptococcus pyogenes                  | 3 days – 6.5 months                        |     |
|                                         |                                            |     |

I – 7 days

Vibrio cholerae





## Persistence - Fungi

Table 2: Persistence of clinically relevant fungi on dry inanimate surfaces.

| Type of fungus       | Duration of persistence<br>(range) | Reference(s)      |
|----------------------|------------------------------------|-------------------|
| Candida albicans     | –  20 days                         | [31, 53, 99, 110] |
| Candida parapsilosis | 4 days                             | [110]             |
| Torulopsis glabrata  | 02 –  50 days                      | [31]              |





## **Persistence - Viruses**

#### Table 3: Persistence of clinically relevant viruses on dry inanimate surfaces.

| Type of virus                           | Duration of persistence (range) |
|-----------------------------------------|---------------------------------|
| Adenovirus                              | 7 days – 3 months               |
| Astrovirus                              | 7 – 90 days                     |
| Coronavirus                             | 3 hours                         |
| SARS associated virus                   | 72 – 96 hours                   |
| Coxsackie virus                         | > 2 weeks                       |
| Cytomegalovirus                         | 8 hours                         |
| Echovirus                               | 7 days                          |
| HAV                                     | 2 hours - 60 days               |
| HBV                                     | > I week                        |
| HIV                                     | > 7 days                        |
| Herpes simplex virus, type 1 and 2      | 4.5 hours – 8 weeks             |
| Influenza virus                         | I – 2 days                      |
| Norovirus and feline calici virus (FCV) | 8 hours – 7 days                |
| Papillomavirus 16                       | > 7 days                        |
| Papovavirus                             | 8 days                          |
| Parvovirus                              | > I year                        |
| Poliovirus type I                       | 4 hours – < 8 days              |
| Poliovirus type 2                       | I day – 8 weeks                 |
| Pseudorabies virus                      | ≥ 7 days                        |
| Respiratory syncytial virus             | up to 6 hours                   |
| Rhinovirus                              | 2 hours – 7 days                |
| Rotavirus                               | 6 – 60 days                     |
| Vacciniavirus                           | 3 weeks -> 20 weeks             |

## In General: Leaching vs. Non-Leaching

- Leaching = the ability of the anti-microbial to affect the area around where it is applied. Think of a raindrop creating ripples in a pail of water. Generally, unbound anti-microbials leach in order to be effective.
- Non-Leaching = affects only the area where it is applied. Binds to the surface and does not dissipate.

Think "rifle" versus "sword"

**KATANtec** 

There are a number of classes of compounds which can be used as sanitizers and disinfectants.

Leaching Chemistries: The efficacy of these compounds varies depending upon the environment and conditions it is used in.



# Different classes of disinfectants typically used:

#### Leaching:

- Halogens
  - Chlorine
  - Iodine
- Quaternary Ammonium Salts
- Phenols
- Alkylating Agents
  - formaldehyde
  - gluteraldehyde
- Oxidizing agents
  - ozone
  - hydrogen peroxide
  - Hypochlorites
- Creosols
- Dyes
  - gentian violet blocks cell wall synthesis
- Heavy metals
  - silver silver nitrate
  - copper copper sulfate
- Alcohol



QUATS



#### Non-Leaching

Silane QACs



 Certain nanometals and nanofibres



### **Typical Disinfectant Technologies**

Amphyl Anti-microbial copper-alloy Barbicide **Barium** borate **BCDMH** Behentrimonium chloride Benzalkonium chloride Benzethonium chloride Benzododecinium bromide Bleach Bromine monochloride Calcium oxide Calcium peroxide Carbethopendecinium bromide Carbol fuchsin Carbolic soap Chlorhexidine Chlorine dioxide 2-Chlorophenol Copper and its salts Cresolene Crystal violet

DBDMH **Diazolidinyl urea Electrolysed water** Ethanol Eucalyptus oil **Fuchsine** Glutaraldehyde Hydrogen peroxide Hypochlorous acid Hypomide Imidazolidinyl urea Iodophor Isopropyl alcohol Lapyrium Lithium hypochlorite Lugol's iodine Methyl violet Milton sterilizing fluid

Nitromersol Ozone Peracetic acid Phenols Pine oil Polyaminopropyl biguanide Potassium permanganate Povidone-iodine Quaternary ammonium cation **Rideal-Walker** coefficient Silver salts Sodium dichloroisocyanurate Sodium hypochlorite Sodium metabisulfite Sodium permanganate Tincture of iodine Titanium dioxide 2,4,6-Trichlorophenol UV lights Vaporized hydrogen peroxide Virkon ATTININ NIN **KATANtech** 

# Properties of disinfectants which need to be considered are:

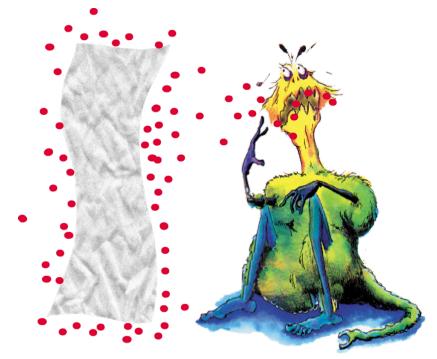
- Efficacy
- Durability
- Toxicity and phytotoxicity
- Non-corrosive and non-staining
- How application is made
   foam, soak, spray, aerosol, wipe...
- Mutagenicity

The selection of disinfectant should be done with care and matched for the job expected.

## The effectiveness of the disinfectant/sanitizer is dependent upon a number of factors:

- Absence of organic matter from the area to be sanitized or not be affected by organic matter
- The **Concentration** of the active ingredient available (ppm)
- The **type of surface** being treated (surface porosity)
- The **diluent** (hard water?) properties
- The length of time the disinfectant/sanitizer is in contact with the surface to be sanitized
- The temperature of the disinfectant solution and surface to be cleaned pH, whether high or low, can increase or decrease potency. The optimal pH increases the degree of ionization of the chemical agent which will affect its ability to penetrate the cell
- **Compatibility** between the cleaners and the disinfectants which are use




## The effectiveness of the disinfectant/sanitizer is dependent upon a number of factors:

|                           | Nanopolymers        | Traditional<br>QUATS | Hypochlorites         | Peroxides             |
|---------------------------|---------------------|----------------------|-----------------------|-----------------------|
| Organic Matter<br>Present | Unaffected          | Strongly affected    | Mildly affected       | Mildly affected       |
| Concentration             | independent         | Strongly affected    | Strongly affected     | Strongly affected     |
| Surface Type              | Wide range          | Wide range           | Corrosive & bleaching | Corrosive & bleaching |
| Water<br>Hardness         | Very mild<br>effect | affected             | Mild effect           | Mild effect           |
| Temperature               | independent         | Strongly affected    | Strongly affected     | Strongly affected     |
| рН                        | independent         | Strongly affected    | affected              | affected              |
| Compatibility             | broad               | medium               | broad                 | broad                 |

## **Leaching Anti-Microbials**

Common antimicrobials on the market leach off the surface to form a *Zone of Inhibition*.

This *Zone of Inhibition* affects the cells but may not kill the cells.



These affected microbes <u>adapt</u> to the anti-microbial treatment and form <u>super bugs</u>.

These super bugs are no longer killed by the antimicrobial and continue to multiply, and present a new generation of challenges



## **Pros & Cons of Leaching**

#### **Pros:**

## Kills large area of microbes

Cons:

Can create mutations or resistant super bugs Only works at the moment applied

No staying power







## **Ideal Disinfectant**

- Long-lasting
- Non-mutagenic
- Ultra-low toxicity
- Broad-spectrum
- Eco-responsible
- Water-based
- Cost-effective



### **Pros & Cons of Non-Leaching**

**Pros:** 

Has staying power. Works until removed from surface Doesn't create mutations or resistant super bugs

Cons:

Only affects where applied

# To Kill Microorganisms, Traditional (*Leaching*) Disinfectants Require:

- Concentration
- Time
- Temperature
  - generally higher
  - Ionic activity increases with temperature
- pH degree of ionization
- Diluent (water) properties Ca<sup>2+</sup> or Mg<sup>2+</sup> (hardness)
- Compatibility of cleaner and disinfectant

### (Non-Leaching) Disinfectants remove these concerns



## What is Nanotechnology as Applied to Disinfection?

A mono-molecular, nano-scale, durable polymerized coating that provides long-lasting anti-microbial protection without affecting the look, feel and properties of the substrate

Think of it as an "invisible paint"



## Not ALL Nanotechnologies are Equal !!!

- Nanometals
- Nanocarbons
- Nanofibres
- Nanopolymers

#### **Differs in:**

- Safety & toxicity
- Durability
- Eco-impact
- Cost
- Effect on Surfaces

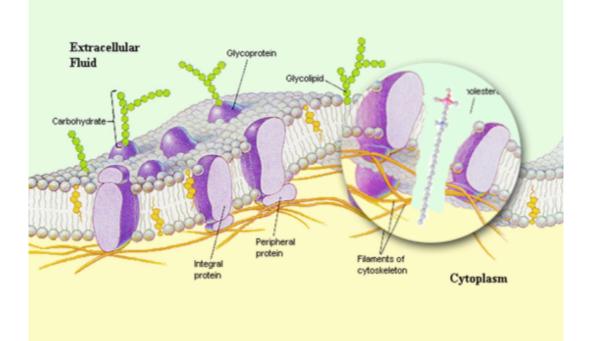


## Not ALL Nanotechnologies are Equal !!!

1111

|                       | Nanopolymers | Nanometals        | Nanofibres                          | Nanocarbons                         |
|-----------------------|--------------|-------------------|-------------------------------------|-------------------------------------|
| Safety & toxicity     | Excellent    | Poor -<br>medium  | Poor                                | Varied                              |
| Durability            | Excellent    | variable          | good                                | good                                |
| Eco-impact            | Excellent    | Not<br>understood | poor                                | Not<br>understood                   |
| Cost-Effective        | low          | high              | medium                              | Medium - <mark>high</mark>          |
| Effect on<br>Surfaces | innocuous    | Colour<br>changes | Change in<br>physical<br>properties | Change in<br>physical<br>properties |
| Availability          | Global       | Regional          | Global                              | Regional                            |




## S.P.A.D.A. Technology Videos

- SPADA animation
- What is SPADA nanotechnology

<u>https://www.youtube.com/watch?</u>
 <u>v=Ua\_LLGQkZGM&list=PLRpYwEJf1</u>
 <u>AGsr1SzQU6DE6030CzeMtrbM</u>



#### The SiQAC Non-Leaching Anti-Microbial Molecule



Negatively charged microbes are electromagnetically attracted to SiQAC's positively charged molecule; stabbing, electrocuting & killing the microbe.



## **Technology Comparison**

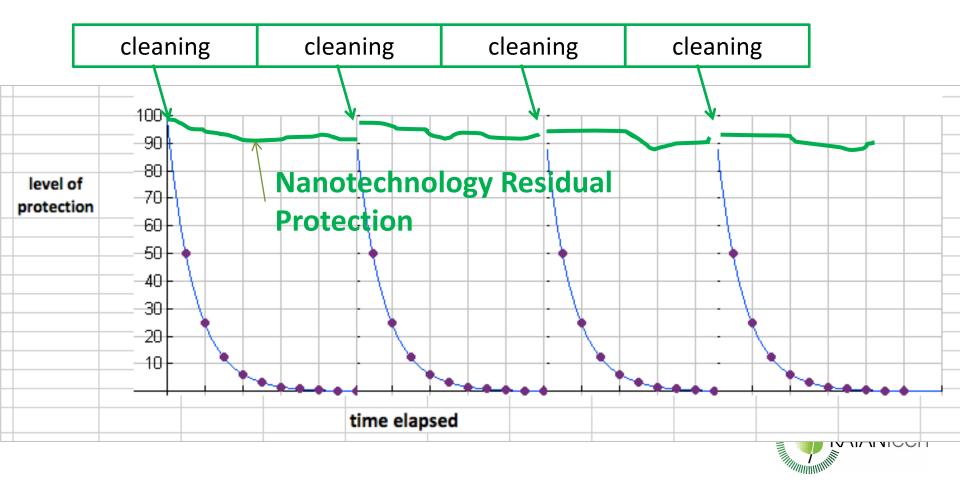
111115

|                                | C                        | •<br>۲                     |                                |                |                 |                      |         |         |        | 2                   |
|--------------------------------|--------------------------|----------------------------|--------------------------------|----------------|-----------------|----------------------|---------|---------|--------|---------------------|
| TECHNOLOGY                     | SiQUATS                  | bzk, natural<br>Acids, dfe | Silver Salts,<br>Nano - Silver | Micro - Copper | HEAVY<br>METALS | TRICLOSAN            | PHENOLS | ALCOHOL | BLEACH | oxidizing<br>Agents |
| toxicity rating                | very mild                | mild                       | mild                           | mild           | high            | growning<br>concerns | high    | medium  | medium | varies              |
| odour reduction                | yes                      | no                         | yes                            | yes            | yes             | yes                  | yes     | no      | yes*   | yes                 |
| durability                     | essentially<br>permanent | no                         | up to 24<br>hours              | durable        | varies          | no                   | no      | no      | no     | no                  |
| green                          | yes                      | yes                        | yes                            | yes            | no              | no                   | no      | no      | no     | no                  |
| prevents super<br>bugs         | yes                      | no                         | no                             | no             | no              | no                   | no      | no      | no     | no                  |
| prevent cross<br>contamination | yes                      | no                         | unlike                         | unlike         | unlike          | unlike               | unlike  | unlike  | unlike | no                  |
| water based                    | yes                      | yes                        | yes                            | no             | no              | no                   | no      | yes     | yes    | varies              |
| E                              |                          |                            |                                |                |                 |                      |         |         | KA     | TANtect             |

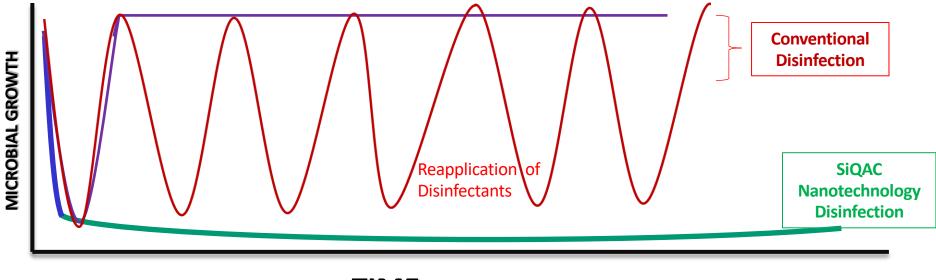
## **Silane QAC's Durability**


#### Surface bonding:

- Covalent bonding
- Ionic bonding
- Surface entanglement
- Mono-molecular film thickness
- Continues to act because it is not consumed


#### • Removal:

- Abrasion
- Will not re-dissolve in water, alcohol, solvents






#### What Keeps You Safer Between Cleanings?



#### **Nanotechnology Durable Disinfection Benefits**



TIME

24 Hours



## Silane QAC's PPM's

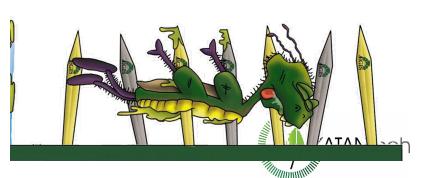
- Monomolecular film formation, attached to surface, means that the finished film is NOT affected by concentrations in solution
- This essentially makes SiQAC ppm independent
- This technology does NOT benefit from "more is better"



## Silane QAC's

This nanotechnology makes surfaces
 "bio-active"

to make them inhospitable to microbes of all types


 This minimizes the persistence of microbes on surfaces – the PROBLEM we are trying to solve



## Silane QAC's Non-Mutagenicity

- Surface bonding:
  - Action is through physical intrusion of cell wall or cleavage of lipid layer
  - Immunity is not generated because there is no selection for chemical susceptibility





## **Non-leaching Silane QAC's**

### Features

- Long-lasting effects
- Non-mutagenic
- Broad spectrum
- Eco-responsible
- Ultra-low toxicity
- Fast-acting
- Effective in presence of organic matter
- Decomposes to non-hazardous compounds
- Solution or vapor phase effective





### Silane QAC Example: Broad-Spectrum

#### Microbes Controlled:

#### Bacteria Controlled

- •Acinetobacter calcoaceticus •Aeromonas hydrophilia
- •Bacillus cereus
- •*Bacillus subtilis*
- •Bacillus typhimurium
- •Brucella abortus
- •Brucella canis
- •Brucella suis
- •Burkholderia cepacia
- •Citrobacter diversus
- •Citrobacter freundii
- •Clostridium difficile (non-spore form)
- Clostridium perfringens
- •Corynebacterium bovis
- •Corynebacterium diptheriae
- •Enterobacter aerogenes
- •Enterobacter agglomerans (I, II) •Enterobacter cloacae
- •Enterococcus
- •Enterococcus
- •Enterococcus faecalis •Escherichia coli
- •Haemophilus influenzae
- •Haemophilus suis
- •Klebs-Löffler bacillus
- •Klebsiella oxytoca
- •Klebsiella pneumoniae
- •Klebsiella terrigena
- •Lactobacillus acidopholus
- •Lactobacillus casei
- •Legionella pneumophila
- •Leuconostoc lactis
- Listeria monocytogenes
- Micrococcus species
- •Micrococcus lutea
- •Morganella morganii •MRSA, CA-MRSA

- •Mycobacterium smegmatis
- •Mycobacterium tuberculosis
- Propionibacterium acnes
  Proteus mirabilis
- •Proteus mirabilis •Proteus vulgaris
- •Pseudomonas aeruginosa
- •Pseudomonas cepacia
- •Pseudomonas fluorescens
- •Salmonella choleraesuis
- •Salmonella enterica
- •Salmonella typhi
- •Salmonella typhimurium
- •Serratia liquefaciens
- •Serratia marcescens
- Stachybotrys chartarum
- •Staphylococcus aureus
- •Staphylococcus epidermidis
- •Streptococcus faecalis
- •Streptococcus mutans •Streptococcus pneumonia
- •Streptococcus preumoniu
- •Vancomycin-resistant enterococci
- •Xanthomonas campestris

#### Fungi Controlled

- •Alternaria alternata
- •Aspergillus flavus
- Aspergillus fumigatus
- Aspergillus niger
- •Aspergillus terreus
- •Aspergillus versicolor
- •Aureobasidium pullulans
- •Bipolaris australiensis
- •*Candida albicans*
- •*Candida parapsilosis* •*Cephaldascus fragans*
- •Chaetomium globosum

•Cladosporium herbarum

Algae Controlled

•Anabaena cvlindrica

•*Chlorophyta (green)* 

•Chrysophyta (brown)

•Oscillatoria borneti

•Selenastrum gracile

Viruses Controlled

•Bovine Adenovirus Type I

•Bovine Adenovirus Type IV

•Adenovirus Type II

•Adenovirus Type IV

•*Feline pneumonitis* 

•Herpes Simplex Type I

•Herpes Simplex Type II

•H1N1

•*H3N2* 

•HIV B

•HIV-1 (AIDS)

•Influenza B

•Poliovirus

•SARS

Vaccinia

•Reovirus Type I

Simian Virus 40

•Influenza A (Japan)

•Influenza A2 (Aichi)

•Parinfluenza (Sendai)

•Influenza A2 (Hong Kong)

•Cyanophyta (blue-green)

•Scenedesmus quadricauda

•Chlorella vulgaris

•Gonium species

•Pleurococcus

•Protococcus

Volvox species

Note: The laboratory

representative of the

conditions of the real

understanding of the

technology. We do not

elimination, control, or

minimization of specific

world. This information

tests may not be

is an aid in the

guarantee the

organisms.

- •Clonostachys rosea
- •Cryptococcus humicola
- •*Cryptococcus laurentii*
- •Dreschslera australiensis
- •Epidermophyton floccosum •Fusarium nigrum
- •Fusarium solani
- •Geotrichum candidum
- •Gliocladium roseum
- •Gliomastix cerealis
- Iternaris species
- •Mariannaea elegans
- •Microsporum audouinii
- •Monilia grisea
- •Mucor sp.
- •Oospora lactis
- •Penicillium albicans
- •Penicillium chrysogenum
- •Penicillium citrinum
- •Penicilliumn notatum
- •Penicillium elegans
- •Penicillium funiculosum
- Penicillium humicola
  Penicillium notatum
- Penicillium variabile
- •Pullularia pullulans
- •Rhizopus nigricans
- •Ricoderm species
- •Stachybotrys atra
- •Saccharomyces cerevisiae

•Trichophyton mentagrophytes

•Trichophyton mentagrophytes

- •Trichoderma flavus
- •Trichosporon mucoides •Trichophyton interdigitale

### Silane QAC Example: Very low toxicity

A 10 kg child would need to eat **11,200** apples sprayed with a SiQAC in **one sitting** to reach the lower toxicity level!



| Substance                                                                 | Animal, Route     | LD <sub>50</sub>                        |
|---------------------------------------------------------------------------|-------------------|-----------------------------------------|
| Sucrose (table sugar)                                                     | rat, oral         | 29,700 mg/kg                            |
| Silane QUATS                                                              | rat, oral         | 12,270 mg/kg                            |
| Vitamin C (ascorbic acid)                                                 | rat, oral         | 11,900 mg/kg                            |
| Cadmium sulfide                                                           | rat, oral         | 7,080 mg/kg                             |
| Grain alcohol (ethanol)                                                   | rat, oral         | 7,060 mg/kg                             |
| Sodium molybdate                                                          | rat, oral         | 4,000 mg/kg                             |
| Table Salt                                                                | rat, oral         | 3,000 mg/kg                             |
| Paracetamol (acetaminophen)                                               | rat, oral         | 1,944 mg/kg                             |
| THC (main psychoactive substance in Cannabis)                             | rat, oral         | 1,270 mg/kg males; 730 mg/kg<br>females |
| Metallic Arsenic                                                          | rat, oral         | 763 mg/kg                               |
| Coumarin (benzopyrone,<br>from Cinnamomum aromaticum and other<br>plants) | rat, oral         | 293 mg/kg                               |
| Aspirin (acetylsalicylic acid)                                            | rat, oral         | 200 mg/kg                               |
| Caffeine                                                                  | rat, oral         | 192 mg/kg                               |
| Arsenic trisulfide                                                        | rat, oral         | 185 mg/kg - 6400 mg/kg                  |
| Sodium nitrite                                                            | rat, oral         | 180 mg/kg                               |
| Cobalt(II) chloride                                                       | rat, oral         | 80 mg/kg                                |
| Cadmium oxide                                                             | rat, oral         | 72 mg/kg                                |
| Nicotine                                                                  | rat, oral         | 50 mg/kg                                |
| Strychnine                                                                | rat, oral         | 16 mg/kg                                |
| Arsenic trioxide                                                          | rat, oral         | 14 mg/kg                                |
| Sodium cyanide                                                            | rat, oral         | 6.4 mg/kg                               |
| White phosphorus                                                          | rat, oral         | 3.03 mg/kg                              |
| Mercury(II) chloride                                                      | rat, oral         | 1 mg/kg                                 |
| Beryllium oxide                                                           | rat, oral         | 0.5 mg/kg                               |
| Aflatoxin B1 (from Aspergillus flavus)                                    | rat, oral         | 0.48 mg/kg                              |
| Venom of the Inland Taipan (Australian snake)                             | rat, subcutaneous | 0.025 mg/kg                             |
| Dioxin (TCDD)                                                             | rat, oral         | 0.020 mg/kg                             |

## Silane QAC Example: Durable Effects

| Laboratory Testing on Katan Technologies Products  |         |                         |                                                                                                                                                                                                                   |                         |                |  |  |  |
|----------------------------------------------------|---------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--|--|--|
| Organism                                           | Initial | Product                 | Efficacy                                                                                                                                                                                                          | Test Method             | Testing Lab    |  |  |  |
| Acid tolerant bacteria                             | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Aspergillus niger                                  | >99%    | Biospada                | >90% (>21 days)                                                                                                                                                                                                   | Modified ASTM G-21      | Microstar      |  |  |  |
| Aureobasidium pullulans                            | >99%    | Biospada                | >90% (>21 days)                                                                                                                                                                                                   | Modified ASTM G-21      | Microstar      |  |  |  |
| Avian Influenza A (H3N2) virus (Avian Reassortant) | >99%    | Biospada Plus           | >99% (7 days)                                                                                                                                                                                                     | 5 min, 10 min exposures | Ryscor Science |  |  |  |
| Avian Influenza virus H5N1                         | >99%    | Biospada Plus           | >99% (7 days)                                                                                                                                                                                                     | 5 min, 10 min exposures | Ryscor Science |  |  |  |
| B. cereus ATCC 11778                               | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| C. albicans ATCC 10231                             | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Candida para psilosis                              | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Cryptococcus laurentii                             | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| E.coli ATCC 25922                                  | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| E.coli ATCC# 25922                                 | >99%    | Biospada                | >99% (7 days)                                                                                                                                                                                                     | ASTM E2149              | Microstar      |  |  |  |
| E.coli ATCC# 25922                                 | >99%    | Biospada, Biospada Plus | >99% ( 3200 feet of dragged abrasion)                                                                                                                                                                             | ASTM E2149              | Microstar      |  |  |  |
| E.coli ATCC# 25922                                 | >99%    | Biospada                | >88% ( 3200 feet of dragged abrasion)                                                                                                                                                                             | ASTM E2149              | Microstar      |  |  |  |
| Gliocladium virens aka (Trichoderma virens)        | >99%    | Biospada                | >90% (>21 days)                                                                                                                                                                                                   | Modified ASTM G-21      | Microstar      |  |  |  |
| Influenza A H1N1                                   | >99%    | Biospada                | >91%                                                                                                                                                                                                              | MDCK ATCC #CCL-34       | Biosciences    |  |  |  |
| Klebsiella pneumoniae                              | >99%    | Biospada                | >99% ASTM E2149                                                                                                                                                                                                   |                         | KT R&D         |  |  |  |
| Klebsiella pneumoniae                              | >99%    | Biospada                | >90% (after 50, 75 and 100 commercial<br>launderings on assorted textiles treated<br>with Biospada)                                                                                                               | ASTM E2149              | I. Bernier     |  |  |  |
| Klebsiella pneumoniae                              | >99%    | Biospada                | >99% (after 5,20, 30 commercial launderings<br>on assorted textiles treated with Biospada)                                                                                                                        | ASTM E2149              | I. Bernier     |  |  |  |
| L. monocytogenes 27853                             | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| P. aeruginosa ATCC                                 | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Penicillium funiculosum aka P. pinophilium         | >99%    | Biospada                | >90% (>21 days)                                                                                                                                                                                                   | Modified ASTM G-21      | Microstar      |  |  |  |
| S. aureus ATCC 25923                               | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| S. typhimurium                                     | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Saccharomyces cerevisiae                           | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Shigella sp                                        | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Trichosporon mucoides                              | >99%    | Biospada Plus           | >99%                                                                                                                                                                                                              | UNE 1276                | I. Bernier     |  |  |  |
| Z. E.coli, Klebsiella pneumoniae                   | >99%    | Biospada                | >95% on: Acetate, Acrylic, Concrete, Cotton,<br>Cotton Blends, Drywall, Elastane, Emery<br>Boards, Fiberglass, Foam, Laminate, Non-<br>Wovens, Nylon, Poly Blends, Polyester,<br>Polypropylene, & Stainless Steel | ASTM E2149              | KT R&D         |  |  |  |

To obtain copies or further details of independent tests and studies, please contact your local KATANTECH office, or ask for them via e-mail at info@katantech.com.

#### Hands : Up to 6 hours



#### Surfaces & Environment : Up to **30 days**



## **SiQAC Durability**

- Aspergillus >31 days
- *E.Coli* >31 days
- *Klebsiella* 5,10,30,50 75, 100 commercial launderings
- *Listeria* >14 days
- Penicillium >14 days
- SARS >14 days



## Silane QAC Example: Cost-effective

- Durable attachment to the surface means:
  - Less material usage
  - Fewer applications
  - Fewer incidences of cross-contamination
  - Reduced absenteeism
  - Reduced medical and liability costs
  - Essentially a silent, vigilant, anti-microbial "insurance" policy





## Surfaces to Which SiQAC's can be Applied

- Acetate
- Acrylic
- Cardboard/Paper
- Ceramics
- Ceramics
- Concrete
- Concrete
- Cotton
- Cotton Blends
- Drywall
- Elastane
- Emory Boards
- Fibreglass
- Foam
- Foams
- Glass

- Laminate
- Metal
- Non-wovens
- Nylon
- Paints
- Paper
- Plastic
- Poly Blends
- Polyester
- Polypropylen
- PVC
- Rubber
- Skin
- Stainless Steel
- Textiles
- Wood







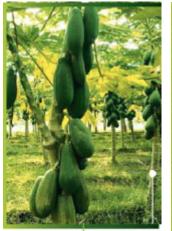

### Industries to Which SiQAC's can be Applied










11.













## **Testing Results**

.

| Laboratory Testing on Katan Technologies Products        |         |                               |                                       |                            |                   |  |  |  |
|----------------------------------------------------------|---------|-------------------------------|---------------------------------------|----------------------------|-------------------|--|--|--|
| Organism                                                 | Initial | Product                       | Efficacy                              | Test Method                | Testing Lab       |  |  |  |
| Acid tolerant bacteria                                   | >99%    | Biospada<br>Plus              | >99%                                  | UNE 1276                   | l. Bernier        |  |  |  |
| Aspergillus niger                                        | >99%    | Biospada                      | >90% (>21 days)                       | Modified ASTM<br>G-21      | Microstar         |  |  |  |
| Aureobasidium<br>pullulans                               | >99%    | Biospada                      | >90% (>21 days)                       | Modified ASTM<br>G-21      | Microstar         |  |  |  |
| Avian Influenza A<br>(H3N2) virus (Avian<br>Reassortant) | >99%    | Biospada<br>Plus              | >99% (7 days)                         | 5 min, 10 min<br>exposures | Ryscor<br>Science |  |  |  |
| Avian Influenza virus<br>H5N1                            | >99%    | Biospada<br>Plus              | >99% (7 days)                         | 5 min, 10 min<br>exposures | Ryscor<br>Science |  |  |  |
| B. cereus ATCC 11778                                     | >99%    | Biospada<br>Plus              | >99%                                  | UNE 1276                   | l. Bernier        |  |  |  |
| C. albicans ATCC 10231                                   | >99%    | Biospada<br>Plus              | >99%                                  | UNE 1276                   | l. Bernier        |  |  |  |
| Candida para psilosis                                    | >99%    | Biospada<br>Plus              | >99%                                  | UNE 1276                   | l. Bernier        |  |  |  |
| Cryptococcus laurentii                                   | >99%    | Biospada<br>Plus              | >99%                                  | UNE 1276                   | l. Bernier        |  |  |  |
| E.coli ATCC 25922                                        | >99%    | Biospada<br>Plus              | >99%                                  | UNE 1276                   | l. Bernier        |  |  |  |
| E.coli ATCC# 25922                                       | >99%    | Biospada                      | >99% (7 days)                         | ASTM E2149                 | Microstar         |  |  |  |
| E.coli ATCC# 25922                                       | >99%    | Biospada,<br>Biospada<br>Plus | >99% ( 3200 feet of dragged abrasion) | ASTM E2149                 | Microstar         |  |  |  |
| E.coli ATCC# 25922                                       | >99%    | Biospada,                     | >88% ( 3200 feet of dragged abrasion) | ASTM E2149                 | Microstar         |  |  |  |
| E.coli ATCC# 25922                                       |         |                               |                                       |                            |                   |  |  |  |
| E.coli ATCC# 25922                                       |         |                               |                                       |                            |                   |  |  |  |

**\Ntech** 

## **Testing Results**

11//

| Gliocladium virens aka<br>(Trichoderma virens) | >99% | Biospada         | >90% (>21 days)                                                                                              | Modified<br>ASTM G-21 | Microstar   |
|------------------------------------------------|------|------------------|--------------------------------------------------------------------------------------------------------------|-----------------------|-------------|
| Influenza A H1N1                               | >99% | Biospada         | >91%                                                                                                         | MDCK ATCC<br>#CCL-34  | Biosciences |
| Klebsiella pneumoniae                          | >99% | Biospada         | >99%                                                                                                         | ASTM E2149            | KT R&D      |
| Klebsiella pneumoniae                          | >99% | Biospada         | >90% (after 50, 75<br>and 100 commercial<br>launderings on<br>assorted textiles<br>treated with<br>Biospada) | ASTM E2149            | l. Bernier  |
| Klebsiella pneumoniae                          | >99% | Biospada         | >99% (after 5,20, 30<br>commercial<br>launderings on<br>assorted textiles<br>treated with<br>Biospada)       | ASTM E2149            | l. Bernier  |
| L. monocytogenes                               | >99% | Biospada<br>Plus | >99%                                                                                                         | UNE 1276              | l. Bernier  |
| P. aeruginosa ATCC<br>27853                    | >99% | Biospada<br>Plus | >99%                                                                                                         | UNE 1276              | I. Bernier  |
| Penicillium funiculosum<br>aka P. pinophilium  | >99% | Biospada         | >90% (>21 days)                                                                                              | Modified ASTM<br>G-21 | Microstar   |
| S. aureus ATCC 25923                           | >99% | Biospada<br>Plus | >99%                                                                                                         | UNE 1276              | l. Bernier  |
| S. typhimurium                                 | >99% | Biospada<br>Plus | >99%                                                                                                         | UNE 1276              | l. Bernier  |
| Saccharomyces<br>cerevisiae                    | >99% | Biospada<br>Plus | >99%                                                                                                         | UNE 1276              | l. Bernier  |
| Shigella sp                                    | >99% | Biospada<br>Plus | >99%                                                                                                         | UNE 1276              | l. Bernier  |
| Trichosporon mucoides                          | >99% | Biospada<br>Plus | >99%                                                                                                         | UNE 1276              | l. Bernier  |

**\TANtech** 

## **Testing Results**

11110

| Z. E.coli, Klebsiella<br>pneumoniae | >99% | Biospada | >95% on:<br>Acetate<br>Acrylic<br>Concrete<br>Cotton<br>Cotton Blends<br>Drywall<br>Elastane<br>Emory Boards<br>Fibreglass<br>Foam<br>Laminate<br>Non-wovens<br>Nylon<br>Poly Blends<br>Polyester<br>Polypropylene<br>Stainless Steel | ASTM E2149 | KT R&D |
|-------------------------------------|------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|
|-------------------------------------|------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|



## Registrations

- INVIMA Registration # 2010024280
- New Zealand Food Safety approvals
- European registry
- Australian TGA 2 registry
- INCI approval
- Malaysia MOH NPCB approval
- Singapore HSA
- EPA approvals
- India FDA approval
- EU PT2 , PT 7, PT9







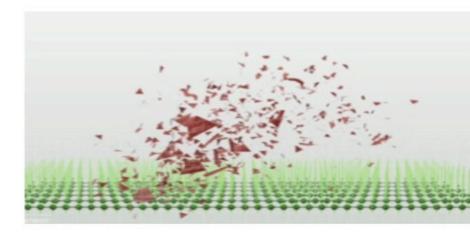




National Pharmaceutical Control Bureau (NPCB) Ministry of Health MALAYSIA










### Cambio de paradigma No. 1

#### No envenenar con químicos: ELIMINACIÓN FÍSICA

de toda clase de microbios





#### Cambio de paradigma No. 2

#### No basta limpiar y desinfectar: PROTECCIÓN CONTINUA más eficaz y más durable





# ¿Porqué ésta nanotecnología es diferente?

- C Elimina física (mecánicamente) no por envenenamiento
   C No genera resistencia
- <sup>C</sup> Durabilidad Acción desinfectante Continua
- <sup>C</sup> No tóxico
- Inoloro e incoloro













## People + Planet

Providing global solutions that clean, protect and prevent disease and create healthy environments.

## KATANtech Colombia S.A.S.

Carrera 14A # 127-15 Oficina 604 Bogota, D.C. 110121 Colombia Tels. 57 1 **7438656 / 7041464** Email: armando.bautista@katantech.com

